Ceria based compounds doped with lanthanide oxides as dopants are one of the most promising materials for electrolytes of solid oxide fuel cell because of their high ionic conductivity. Although several groups have reported XAFS analysis to investigate the influence of local structure on ionic conductivity, their XAFS analysis are limited to the nearest neighbor around cation (cation-O$^{2-}$ path). Here, we report the XAFS analysis of the second nearest neighbor (cation-cation path) for doped ceria compounds.

The second nearest neighbor around Ce$^{4+}$ in (GdO$_{1.5}$)(CeO$_2$)$_{1-x}$, for example, consists of Ce$^{4+}$ and Gd$^{3+}$. Similarly that around Gd$^{3+}$ consists of Gd$^{3+}$ and Ce$^{4+}$. The interatomic distance and Debye-Waller factor of Ce$^{4+}$-Gd$^{3+}$ path and Gd$^{3+}$-Ce$^{4+}$ path should have the same value. Therefore, we performed parameter fitting of Ce edge data and Gd edge data simultaneously using the correlations, $R(\text{Ce}^{4+}-\text{Gd}^{3+})=R(\text{Gd}^{3+}-\text{Ce}^{4+})$ and $\sigma^2(\text{Ce}^{4+}-\text{Gd}^{3+})=\sigma^2(\text{Gd}^{3+}-\text{Ce}^{4+})$. Figure shows the fitting result of (GdO$_{1.5}$)(CeO$_2$)$_{0.9}$, which shows good agreement with experimental data. We applied this analysis method to various ceria compounds. The results indicate that the ionic conductivity is influenced by the distortion of the cation network.
XAFS Analysis of Ceria Based Electrolytes Doped with Lanthanide Oxides

H. Deguchi, H. Yoshida, T. Inagaki, M. Horiuchi, M. Oshitani

a Kansai Electric Power Co., INC.
b Kanden Kakou Co., LTD.
Ceria doped with lanthanide oxides are expected as an electrolyte material for solid state oxide fuel cell because of their high ionic conductivity.

XAFS studies have been reported to understand the relationship between ionic conductivity and structure. However, their analysis is limited to cation-O2- path (nearest neighbor around cation).

In this study, we have tried the XAFS analysis of cation-cation path.
Fourier transforms

Around Ce$^{4+}$ in GDC

Around Gd$^{3+}$ in GDC

Around Ce$^{4+}$ in LDC

Around La$^{3+}$ in LDC
Crystal structure of ceria based electrolyte

- Oxygen vacancies can be introduced by Ln$_2$O$_3$ doping.
- Ionic conductivity originates by hopping of O$^{2-}$ through the vacancy.

<table>
<thead>
<tr>
<th></th>
<th>CeO$_2$</th>
<th>Gadolinia Doped Ceria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>around Ce</td>
<td>around Ce</td>
</tr>
<tr>
<td>nearest neighbor</td>
<td>Ce-O</td>
<td>Ce-O</td>
</tr>
<tr>
<td>(number of path: 8)</td>
<td>(number of path: < 8)</td>
<td>(number of path: < 8)</td>
</tr>
<tr>
<td>second nearest neighbor</td>
<td>Ce-Ce</td>
<td>Ce-Ce, Ce-Gd</td>
</tr>
<tr>
<td>(number of path: 12)</td>
<td>(number of path: 12)</td>
<td>(number of path: 12)</td>
</tr>
</tbody>
</table>
Analysis method

> Using correlation

R(Ce-Ln) = R(Ln-Ce)
σ(Ce-Ln) = σ(Ln-Ce)

> Multiple Data Set Fit

Ce edge data and Ln edge data of the same sample are fitted simultaneously.

Other assumption

Unknown edge energy shifts of Ce-Ln and Ln-Ce were fixed to those of Ce-Ce and Ln-Ln, respectively.

Coordination number was fixed to the theoretical value when dopant cations were randomly distributed.

Fitting software: feffit
Samples and Experiments

Samples

<table>
<thead>
<tr>
<th>Formula</th>
<th>Composition</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\text{GdO}_{1.5})_x(\text{CeO}2){1-x})</td>
<td>(x = 0.05, 0.10, 0.20, 0.30, 0.40)</td>
<td>(x\text{GDC})</td>
</tr>
<tr>
<td>((\text{YO}_{1.5})_x(\text{CeO}2){1-x})</td>
<td>(x = 0.05, 0.10, 0.15, 0.20, 0.30)</td>
<td>(x\text{YDC})</td>
</tr>
<tr>
<td>((\text{LaO}_{1.5})_x(\text{CeO}2){1-x})</td>
<td>(x = 0.02, 0.05, 0.10, 0.15, 0.20, 0.30)</td>
<td>(x\text{LDC})</td>
</tr>
<tr>
<td>CeO\textsubscript{2}, Gd\textsubscript{2}O\textsubscript{3}, Y\textsubscript{2}O\textsubscript{3}, La\textsubscript{2}O\textsubscript{3}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Experiments

- **Edges:** Ce-K(40.4 keV), Gd-K(50.2 keV), Y-K(17.1 keV), La-K(38.9 keV)
- **Beamline:** SPring-8 BL16B2
- **Measurements:**
 - All samples by transmission mode in air at room temperature.
Examples of $\chi (k)$

Ce-K edge : 40.4 keV

CeO$_2$

Gd-K edge : 50.2 keV

Gd$_2$O$_3$
Comparison between experiment and fit

Sample: 10GDC

R factor: 2.76%
Results: Interatomic distance of cation-cation path

\[x \) in \((\text{LnO}_{1.5})_x(\text{CeO}_2)_{1-x}\)
Discussion

Ln$^{3+}$-Ln$^{3+}$ path has the longest interatomic distance in every sample. Especially, though Y$^{3+}$ is smaller than Ce$^{4+}$ in YDC, Y$^{3+}$-Y$^{3+}$ path length is the longest.

In GDC, Gd$^{3+}$-Gd$^{3+}$ distance is close to the other paths.

Ce$^{4+}$-Ln$^{3+}$ distance follows the ionic radius of Ln$^{3+}$.

In GDC, Ce$^{4+}$-Gd$^{3+}$ distance is almost the same as Ce$^{4+}$-Ce$^{4+}$ distance.

Distortion of the cation network is the minimum in GDC.

GDC has the highest ionic conductivity among samples measured in this study.

The conductivity gives the high value with a dopant which brings the small cation network distortion.
EXAFS analysis of cation-cation path, the second nearest neighbor, was carried out.

Distortion of the cation network depends on the kind of the dopant.

GDC, which has the highest ionic conductivity among materials measured in this study, has the minimum cation network distortion.

This suggests that the conductivity gives the high value with a dopant which brings the small cation network distortion.

Further analysis is in progress.