固体電解質型燃料電池電解質材料の局所構造解析

関西電力(株) 総合技術研究所 出口 博史 K422950@kepco.co.jp

固体電解質型燃料電池の実現化に向けた方策の1つに、より高いイオン導電率を持つ固体電解質材料の開発がある。一般に固体電解質は、結晶内に酸素空孔を導入するため、ある酸化物(たとえば CeO₂)に価数の異なるドーパント酸化物(たとえば Sm₂O₃)を少量固溶させて作製する。導入された酸素空孔を介して酸化物イ

オン(O²)が移動することによりイオン導電性が発現する。しかし 発現するイオン導電率の挙動は複雑で、ドーパントの種類によって 異なり、さらにドーパント種類毎に最適なドーパント濃度が存在す る。このメカニズムは明らかになっていない。

このような背景の中、関西電力では、結晶構造的観点からイオン 導電率挙動を解明することを目的として、様々なドーパント濃度や ドーパント種類を持たせた固体電解質材料のXAFSによる局所構造 解析を実施してきた。

図に CeO₂に各種のドーパントを同濃度で固溶した試料における Ce⁴⁺周りとドーパント陽イオン周りに存在する酸化物イオン数の 差を示す。イオン導電率はドーパントとしてサマリウムを添加した とき(図では SDC)に最大となることがわかっているが、それは Ce⁴⁺周りとドーパント周りの差が小さいときに対応していること がわかる。

1.1-	100 -	-
1.0-		-
g 0.9-	YDC	-
E 0.4	•	
Ĕ 0.7		-
0.0	SDC . NDC	
0.5		
0.4 1.00	1.04 1.08 1.12 1.18 Radius of dopart cation / Å	1.20

図 (CeO₂)_{0.8}(LnO_{1.5})_{0.2} (Ln=Y, Sm, Nd, La) において、Ce⁴⁺周りとドーパント陽イオン 周りに存在する酸化物イオン数の差。Ln=Y の試料は"YDC"と表記(以下同様)。

2001.8.3 SUNBEAM研究発表会

稲垣 亨

固体電解質型燃料電池電解質材料の 局所構造解析

関西電力株式会社 総合技術研究所

上分入

エネルギー利用技術研究所 吉田洋之

関電化工株式会社 技術部 堀内正樹

関西電力が実施してきた課題

平成11年10月~12月 <u>イットリア安定化ジルコニア(YSZ)の構造解析</u>, 平成12年2月~6月 <u>マのゴスカイト型および蛍石型固体</u> <u>電解質の局所構造解析</u>, 平成12年10月~12月 <u>ノアンモニア脱硝触媒活性種周辺の局所構造解析</u>, 平成13年2月~6月 <u>ノXAFS法による固体酸化物型燃料電池用</u> <u>ペロブスカイト酸化物の局所構造解析</u>,

イオン導電性の原理

イオン導電率はホスト側、ドーパント側それぞれの周辺構造に依存

メカニズムの解明

イオン導電率の

予想

XAFS利用のメリット それぞれの周辺構造を<mark>別々に</mark>得ることが可能

セリア系材料における "何を" の効果

<u>YSZにおける "どれだけ" の効果</u>

<u>EXAFS解析結果</u>

低ドーパント濃度領域 導入された酸素空孔はZr⁴⁺に隣接 し、Zr⁴⁺周辺のO²⁻原子配列の歪み が緩和される(立方晶安定化)。

高ドーパント濃度領域

立方晶安定化に寄与できなくなっ た酸素空孔は主にY³⁺に隣接し、 Y³⁺周辺の陽イオン配列の歪みを 増加させる。

イオン導電率の減少

EXAFS解析で得られたYSZの動径分布関数

まとめ

固体電解質型電解質材料にXAFSを適用し、イオン 導電率と局所構造との関連性が少しずつ見えてきた。

今後、これまで実施してきた分野に限らず、より広い範 囲に研究対象を広げていく。

(blank)