9. アンジュレータX線を用いたゲー |酸化膜の高精度反射率測定技術開発

(株) 富士通研究所 材料 環境技術研究所 淡路 直樹

awaji@imat.flab.fujitsu.co.jp

最新のMOSデバイス用ゲートSiQ。膜は薄膜化が進み、2nm以下の膜が開発されており、 将来 1nm以下のゲー I膜が使われると考えられている。さらに、ゲー I膜にはボロンの拡散 防止のために窒素が添加されるなど複雑な構造になっており、良質なゲー I膜開発のため に、高精度な分析法が要求されている。しかし、ゲー I膜は薄いことに加え、アモルファス構 造であることから、その評価は難しい。

X線反射率法は、その評価法の一つであるが、従来の技術では、精度のある膜厚は 1nm が限界であった。今回、強力なアンジュレータX線を用いたX線反射率測定技術を開発した。 その結果、従来に較べ一万倍高い計数率と低バックグラウンドを達成し、ダイナミックレンジ 12桁(従来 8桁)および測定角度範囲 30°以上(従来 10°)を得た。これは、評価可能膜 厚 0.3nm に対応しており、1nm のゲー H膜の内部構造 密度、膜厚、界面 表面凹凸 が評価 できる。右図は、アンジュレータビームライン16XUでの膜厚 1nm ゲー H膜の測定結果と、 比較の為、偏向電磁石ビームライン16B2での結果を示す。

アンジュレータX線を用いたゲート酸化膜の 高精度反射率測定技術開発

(株富士通研究所 淡路直樹

THE POSSIBILITIES ARE INFINITE FUITSU

ロードマップ ITRS 2001 (MPU)

量産開始年	2001	2004	2007	2010	2013	2016
テクノロジーノード	130nm	90nm	65nm	45nm	32nm	22nm
ゲート長	90nm	53nm	35nm	25nm	18nm	13nm
SiO2 換算膜厚	1.3 ~ 1.6nm	0.9 ~ 1.4nm	0.6 ~ 1.1nm	0.5 ~ 0.8nm	0.4 ~ 0.6nm	0.4 ~ 0.5nm

2. X線反射率

(1) 膜密度 (g/cm^3) (3)表面 •界面凹凸 (a) < dの場合(減衰項) **複素屈折率** n = 1- + i R' ~ R exp(-16 2 $^2\sin^2$ / 2) $= r_e N_A ^2 /2 (Z+f')/A$ $= r_e N_A ^2 /2 f''/A$ (b) >dの場合(界面スライス) $n_i(z) = (n_i + n_{i+1})/2 - (n_i - n_{i+1})/2$ (2) 層状モデル (界面電場の連続性) $erf((z-z_i)) = 2_i)$ 界面 i での反射強度 $E_i \sim (n_{i+1}-n_i)^2 \sim$ Effective density method _{i+1,i}² + _{i+1,i}²)—— 干涉振幅 (q_Z $E1_{in}$ $E1_{out} \sim (1-n_1)^2$ (4)積分形式 $n_0 = 1$ $\sim (n_1 - n_2)^2$ E2_{out} $E2_{in}$ $R = R_{F} | 1 / 0 +$ d SiO₂ d /dz $\exp(iq_z z)dz|^2$ n_1 図 1 Si n_{2}

3.市販装置

Х線波長: (=1.541)

リガクRGXR :Cuローター光源 60KV,300mA(18KW)

4.偏向ビームライン16B2

X線波長: (=1.541)

5.アンジュレータビームライン16XU

X線波長: (=1.4)

3層構造解析 (右図実線)

得られた密度および 凹凸のプロファイル。 界面プロファイルは 誤差関数erf(z/2) で与えた。

7.まとめ

アンジュレータ放射光利用で ダイナミックレンジ12桁、測定 角度範囲35°以上が得られた。 2 = 35° $q_z = 2.7$ ⁻¹ 2 = 50° $q_z = 3.8$ ⁻¹

この結果、最小膜厚は0.3nm (SiO₂一分子層に対応)まで評価 可能になり、今後のゲート酸化膜 でも対応可能になった。

