Crystallographic Characterization of Poly-Si Thin Films

Junichi NISHINO, Materials and Devices Development Center, SANYO Electric Co., Ltd.

nishino@ul.rd.sanyo.co.jp

Poly-Si has been used as a gate electrode material for many years on CMOS LSIs. As smaller and smaller LSIs continue to be designed, even a minor difference in the crystal structure affects the electric property of MOS transistor. The typical thickness of gate poly-Si films is about 200nm in 0.18µm rule LSIs. Normally, the poly-Si grains are around the same order of thickness, and there are cases where a grain becomes a single crystal from the bottom to the top of film. In this case, the Boron penetration effect, which is a serious problem in making LSIs, can easily occur due to ion channeling during ion implantation. To avoid this effect, gate poly-Si films are made of double poly-Si layers. It is necessary to analyze the crystal structure of each layer of the double poly-Si layer. In this experiment, to evaluate the characteristics of the crystal structure near the surface, we examined a test sample

of an amorphous-Si/poly-Si double layer film on Si wafer. The in-plane X-ray diffraction was applied. The incident X-ray energy was 10.0keV. Figure 1 shows the in-plane diffraction patterns of the amorphous-Si/poly-Si double layer film. The thickness of each layer was the same as 100nm of amorphous-Si and poly-Si. In the =0.180 degree case, the diffraction pattern has only an amorphous-Si structure. In the =0.190degree case, the diffraction pattern has been shown that it is possible to evaluate crystal structures of poly-Si thin films in the depth direction by precise control in incident angle.

Fig. 1 In-plane XD spectra for amorphous-Si/ Poly-Si double layer film with various incident angles.

Crystallographic characterization of poly-Si thin films

Materials and Devices Development Center BU, SANYO Electric Co., Ltd.

Junichi NISHINO

2003.9.5 第3回サンビーム研究研究会

- 1. Introduction
- 2. Requirement for LSI analysis
- 3. X-ray diffraction of poly-Si thin film
- 4. Summary

Introduction

Digital network world

Key technology for system LSI

Requirement for LSI analysis

ITRS2002 road map

Year of production	2001	2004	2007	2010	2013	2016
DRAM 1/2 pitch(nm)	130	90	65	45	32	22
Critical perticle size(nm)	43	24	17	12	9	6
Junction depth(nm)	27	15	10	7	5	4
Void size in Cu lines(nm)	32.5	22.5	16.25	11.25	8	5.5

View	SEM, TEM, AFM
Element	<mark>XRF</mark> , SIMS, EPMA, AES
Structure	XRD, XAFS
Thickness	XRR, Ellipsometory

Make precise analytical technique using SR

2003.9.5 第3回サンビーム研究研究会

SANYO Crystallographic characterization of thin films

Shrinkage of MOS-Tr Boron diffusion problem

Prevent Boron diffusion

Double Poly-Si layer

Analyze crystallographic structure of thin Poly-Si films along depth direction

of BL16XU

BL16XU XRD

Parallel beam
Small size in incident beam :< 0.2mm
Energy of incident X-ray tunable
Intensity strong 3 order than rotation source

• -2 , thin film, in-plane

Poly-Si (50nm) diffraction

SANYO

Layout of in-plane diffraction

Measurement condition

Incident X-ray •Energy 10.0KeV •Beam size 0.1 mmW × 0.2 mmH Sample setting •Incident angle $0.170 \sim 0.200$ degree (precise angle control by tangent goniometor) sample sticking to stage by oil Detection Scintillation counter •Detector : double slit $1.0 \text{mm} + 1.0 \text{mm} \quad 0.29^{\circ}$ Measurement mode •2 scan (fixed)

Total reflection on Si surface

almost reflected by sample surface

Need precise incident angle control under 0.001 °

Penetrate into sample

over critical angle

X-ray reflectivity of Si surface

Sample setting accuracy (sample height)

<u>height accuracy : 1 µ m</u>

Sample setting accuracy (zero angle)

angle accuracy : 0.001 °

Test piece 1(Amo/Poly double layer)

Test piece 2(Amo/Poly double layer)

Thick amorphous Si layer to measure annealing effect

Crystallographic change by annealing

Crystallographic change by annealing

Crystallographic change by annealing

	Incident angle	Penetra tion depth	index					
			111		220		311	
			FWHM	grain size	FWHM	grain size	FWHM	grain size
as depo	0.170 °	9.5nm						
	0.200 °	204nm	0.5 °	13nm	0.5 °	14nm	0.6 °	12nm
after anneal	0.170 °	9.5nm	0.08 °	82nm	0.13 °	52nm	0.13 °	53nm
	0.200 °	204nm	0.08 °	82nm	0.13 °	52nm	0.14 °	49nm

FWHMs of each index are almost same value after anneal treatment

change uniform crystallographic structure in depth direction

•High S/N in-plane XRD measurement for thin film is available using BL16XU XRD system.

•It is possible to evaluate crystal structures of poly-Si thin films in the depth direction by precise control in incident angle of 0.001 °.

Crystallographic characterization of SOI and epitaxial layer is next step.