Local Structure Analysis of Germanium in the Optical Fiber

Junji IIHARA, Sumitomo Electric Industries, LTD., Analysis Technology Research Center

junji-iihara@sei.co.jp

The optical fiber is essential to the mass high-speed optical communication. Optical signals are transmitted in the optical fiber core region by the waveguide structure. To control the refractive index, GeO₂ and/or F are doped to SiO₂ glasses. The transmission losses, relating to the glass structure, are required to be suppressed to low levels. They, however, increase with increasing the GeO₂ concentration. We, therefore, have studied the GeO₂-SiO₂ glass structure with focus on the local structure of Ge against the GeO₂ concentration.

The figure shows XANES spectra of the GeO_2 -SiO₂ glasses with different GeO_2 concentrations. The spectral shapes are quite similar to each other but the absorption edge is shifted to the higher energy side according to the refractive index difference (n).

Figure The Ge-K XANES spectral change with the reflective index difference (n) of GeO₂-SiO₂ glasses.

LOCAL STRUCTURE ANALYSIS OF GERMANIUM IN THE OPTICAL FIBER

1. Introduction

- 2. Theoretical analysis of Ge XANES
- 3. Conclusion

Junji lihara (junji-iihara@sei.co.jp)

Sumitomo Electric Industries, Ltd. Analysis Technology Research Center

Optical Fiber Cable

2

Cladding (a-SiO₂) Core (a-GeO₂/SiO₂) •To control refractive index

Waveguide Structure

Lowering the Loss of Optical Fiber

Structural analysis method for GeO₂ doped SiO₂ glass 4

Experimental Results of XAFS Method

1st Neighbor : Oxygen, Coordination Number ~ 4 •XANES Peak : Shift to Higher Energy by [GeO₂]

Theoretical analysis of XANES energy shift

- 1. Selection of XANES analysis method
- 2. XANES simulation for some models

GeO₂, Metallic Ge

Object •XANES Energy Shift

DV-X

Major Difference between FEFF8 and DV-X Methods 8

Simulation with FEFF8 and DV-X method

Analysis Technology Research Center

DV-X : Three Possible Sources for Peak Shift

- GeO₂ Clustering
 Structure Deformation
- 3. 2nd Nearest-neighbor Vacancy

Source 1. GeO₂ Clustering

Source 1. GeO₂ Clustering

Source 2. Structure Deformation

SE Analysis Technology Research Center

Source 3. 2nd Nearest-neighbor Vacancy

Discussion

Summary

The method for local structural analysis of Ge in GeO₂/SiO₂ glass was developed; XAFS measurements and simulation.

•XANES energy shifts were explained by the GeO₂ clustering effects with DV-X_α simulation.
 High GeO₂ doped SiO₂ glass may have large GeO₂ cluster.

Future Prospect

•XAFS measurements in optical fiber shape specimen to evaluate the relation of its character. Local structural analysis of other elements in SiO₂ optical fiber glasses.