Synchrotron Radiation Research to control scale and rust layer in steel surface

*Masayuki Inaba¹, Takenori Nakayama² Takashi Oonishi², Mikako Takeda² Tatsuo Ishikawa³ and Takashi Watanabe¹

¹Kobelco Research Institute, Inc. ²Materials Research Laboratory, Kobe Steel, Ltd. ³School of Chemistry, Osaka University of Education

SR applied Research Targets

Field	Part	Specimen	Method (Aim)	Section
Steel	Surface scale Layer (practical process)	Steel plate	In heating XRD (structure analysis on heating process)	Analysis of Surface scale layer –part1
		Steel plate surface	XAFS (local structure/chemical state analysis) XRD (structure analysis)	Analysis of Surface scale layer –part2
	Surface rust layer (formation mechanism)	Synthesized Metal Oxide	XAFS (local structure/chemical state analysis)	Analysis of rusts –part1 & 2
	Nano cluster in micro alloy	Steel plate	XAFS (microstructure analysis) SAXS (cluster size analysis)	
Car	Crushable body	Porous Al block	X-ray Radiography & CT (image analysis for foam size, strain, 3D-structure)	
Electronics	Circuit material	Thin layer (Cu alloy, Al alloy, Ag alloy)	<i>In plane</i> XRD (Residual stress analysis) XAFS (microstructure analysis) DS-XAFS (microstructure analysis for surface details)	
Environment	Soil	Soil contained heavy metal artificially	XAFS (Chemical state analysis)	
other	Medical Building structure Hard coating layer		XAFS (microstructure analysis) XRD (structure analysis) <i>In plane</i> XRD (Residual stress analysis)	

Approaches for study

- Surface scale layer
 - Specimens: High temperature scale layer
 - Iron oxide scale layer on the surface of Si-contained steels during heating process
 - Methods and Aims
 - In heating XRD (direct observation of scale formation on heating process)
 - XAFS (local structure/chemical state analysis)
 - XRD (structure analysis to certify the existence of fayalite)
- Surface rust layer
 - Specimens: Artificially-synthesized rusts
 - Fe oxide rusts contained an alloying element (Al, Ti, Co, Ni)
 - Zn oxide rusts contained an alloying element (Al, Fe, Co, Ni)
 - Zn oxide rusts made from $ZnSO_4$ solution and iron compound species
 - Methods and Aims
 - XAFS (local structure/chemical state analysis)
- Final Purpose
 - Analyzing rusts and scales on practical processes
 - Finding scales and rusts suitable as material
 - Decision of the treating condition/process of scales and rusts

Study of the microstructure in scale layer on steel surface

• Task

 To clarify process parameters for producing steel to form the easier spalled scale layer

Pic.1 Hot rolling process

• Problem

- Scales are consisted of lamellar metal oxides
- Each scale layer is a mixture of different metal oxides

• Aim

- To establish evaluation methods for scale study with SR technique
- To elucidate microstructures and formation processes of scale on steel

Analysis of surface scale layer -part1

- Structure analysis of surface scale layer on Si-contained steel : *in heating* XRD (transmission mode, BL16B2)
 - Results
 - Fayalite (Fe₂SiO₄) forms over 1123K in oxidation atmosphere on the surface of 3wt% silicon contained steel
 - The adding silicon affects the phase transition point, the grain growth behavior and the formation of metal oxide species

Fig.1-1 In heating XRD setting

Fig.1-2 In heating XRD setting (a heating furnace)

Fig.1-3 X-ray diffraction patterns during heating process (a) Silicon free steel, (b) 3wt% silicon contained steel

Analysis of surface scale layer -part2

- Structural analysis of surface scale layer on Si-contained steel : XAFS(BL16B2), XRD(BL16XU)
 - Results
 - Mixing ratio of iron oxide compounds (i.e. Fe oxidation state) was varied by annealed temperatures and Si content.
 - Thickness of fayalite (Fe₂SiO₄) layer increased with increasing Si content.

Radial Distance / 0.1nm Fig.2-1 RDF of scale samples annealed at 1374K/1474K and standard iron oxide

Study of the microstructure in rust layer on steel surface

• Task

 Improving atmospheric corrosion resistance of steel by making rust layer dense.

Pic.2 example of using high-corrosion resistant steel

Pic.3 Comparison of rust grain size

• Problem

 Information of rust layer on steel surface obtained from conventional analytical tools is limited.

• Aim

- To establish XAFS technique for rust study
- To elucidate microstructures and formation processes of rust on steel.

Analysis of rust -part1

- Microstructure analysis of Zn oxide rusts contained a metal element (Fe, Co, Ni, Al) :XAFS (BL16B2)
 - Results
 - Zn oxide rusts transform from ZnO to ZHC (Zn₅(OH)₈Cl₂• 5w:Simonkolleite) according to element content.
 - Zn oxide become amorphous by Zn-Zn network breaking in ZnO structure.
 - Zinc oxide structure was affected by alloying element species and content

by added elements and quantities.

Analysis of rust -part2

- Microstructural analysis of Zn oxide rusts made from ZnSO₄ solution and iron compound species such as FeCl₂, FeCl₃* or Fe₂(SO₄)₃ :XAFS (BL16B2)
 - * To simulate environment in seaside area, Cl compounds were adopted as samples.
 - Results
 - Zinc oxide rusts consist of mixture of Zinc oxide compounds such as ZnO, ZnFe₂O₄ and Zn(OH)Cl
 - Mixture ratio of Zinc oxide compounds was changed with iron compound species and amounts of iron.

