

CoPtCr-SiO₂垂直磁気記録媒体高記録密度化のための 放射光X線およびTEMによるナノ構造解析

久保木孔之、久保登士和、斉藤明、田沼良平、及川忠昭 上住洋之*、島津武仁**

富士電機アドバンストテクノロジー(株) *富士電機デバイステクノロジー(株) **東北大学電気通信研究所

背景 – 世界の情報量 (2002)-

Table 1.2: Worldwide production of original information, if stored digitally, in terabytes circa 2002. Upper estimates assume information is digitally scanned, lower estimates assume digital content has been compressed.

Storage Medium	2002 Terabytes Upper Estimate	2002 Terabytes Lower Estimate	1999-2000 Upper Estimate	1999-2000 Lower Estimate	% Change Upper Estimates
Paper	1,634	327	1,200	240	36%
Film	420,254	76,69	431,690	58,209	-3%
Magnetic	5187130	3,416,230	2,779,760	2,073,760	87%
Optical	103	51	81	29	28%
TOTAL:	5,609,121	3,416,281	3,212,731	2,132,238	74.5%

(http://www.sims.berkeley.edu/research/projects/how-much-info/)

景 - 世界中の磁気記録情報量(2002

1999 <u>2~2.8×10 エクサバイト/年</u> (http://www.sims.berkeley.edu/research/projects/how-much-info/)

0.029 µ m

Front runners

80ギガビット/平方インチ (現状製品レベル)

CoPtCr-SiO2垂直磁気記録媒体

高いK_u,分離性良好な粒構造^{1,2)}

高い熱安定性と低ノイズ化の両立が可能

高記録密度の垂直磁気記録媒体として有望!

本研究では、K_uの変化に影響を与えると考えられるPt 量に着目し、CoPtCr-SiO₂磁性層のPt組成増加に伴う結 晶構造の変化とK_u等の磁気特性の関係を議論する。

1)T.Oikawa,et al,IEEE Trans.Magn.,38,1976(2002),H.Uwazumi,et al,IEEE Trans. Magn.,39,1914(2003) 2)T.Shimatsu,et al,IEEE Trans. Magn.,40,2483(2004)

T.Shimatsu, et al, IEEE Trans. Magn., 40, 2483 (2004)

評価方法

- ・磁気特性 (K_u):トルク磁力計(反磁界エネルギー2 M_s²補正あり) ・結晶構造 :微小角入射X線回折法(GIXD)
 - : 微小角入射X線回折法(GIXD) (SPring-8の産業用ビームラインBL16XUの4軸X線回折計) : 電界放出型透過電子顕微鏡(FE-TEM)

Ru seedとCoPtCr-SiO, 膜の微細構造確認

Dgrain (粒界幅も含めた粒径)

 K_u^g CoPtCr粒子の体積充填率を考慮して補正した粒子の磁気異方性 · Pt ~ 15 at% K_u^g K_u (without SiO₂) · Pt 15at% ~ K_u^g < K_u (without SiO₂) なぜ?

面内回折(微小角入射X線回折法)

SiO₂ 0 at%

SiO₂11 at%

SiO₂ 11%

Pt濃度30 at%近傍でfcc(111)/hcp(101)回折強度比が増加

CoPtCr-SiO₂ Pt 30 at%

CoPtCr-SiO₂

Ru

E e-Front runners

格子像

暗視野像

10 nm

CoPtCr-SiO₂ Pt 30 at%

Grazing incidence x-ray diffraction with Imaging plate

	格子	結晶面	GIIP 法	標準値 (粉末X線)
Ru hcp		101	100	100
	102	36	33	
		103	46	42
Pt	fcc	111	100	100
		200	62	61

GIIP法によれば,nm薄膜で あっても粉末X線回折(バル ク)に匹敵する精度で結晶 構造の定量化が可能

- 1. 放射光X線による微小角入射X線回折法により、20 nm以下 の薄膜に対してhcp相とfcc相を分離して測定する技術を確立し た。
- 2. 放射光X線回折による結晶構造解析により、CoPtCr-SiO2膜のPt濃度30 at%近傍におけるKuの減少はfcc相の形成が影響をおよぼしていると示唆された。
- 3. 透過電子顕微鏡による断面暗視野像観察によりPt濃度30 at% のCoPtCr-SiO₂磁性層中のfcc相は、Ru/磁性層界面や表面な どに局在していない事が明らかになった。
- 4. 放射光X線を用いたGIIP法によれば、nm薄膜であっても粉 末X線回折(バルク)に匹敵する精度で結晶構造の定量化が 可能と考えられる。