住友電工の光通信関連機器

光ファイバ増幅器(EDFA) に求められるスペック

EDFA: Erbium Doped Fiber Amplifier

EDFAの増幅スペクトル

広帯域化利得の平坦化

3

Er局所構造に与える添加元素の効果

増幅スペクトルの形状変化 — Erの局所構造変化に起因

〈 研究事例 〉

RC

0.5Er2O3-(75-x)SiO2-xAl2O2-25Na2O (x=0 ~ 30) S.Tanabe, et al., JNCS 196, 101, (1996) 1Er2O3-59SiO2-20Al2O3-20Na2O P.M. Peters, et al., JNCS 239, 162, (1998) 0.5Er2O3-76SiO2-4.5Al2O3-19Ti2O3 F. d'Acapito, et al., JNCS 293, 118, (2001)

2Er2O3-58SiO2-10Al2O3-30Li2O3

T.Murata, et al., STAM 1, 139, (2000)

添加元素に依存して局所構造変化

バルクガラスでの評価

実ファイバでの評価事例はない

XAFSをEDF実ファイバ評価に適用

測定試料

	試料番号	コア組成			扣针利很信辛((0/)
		Er/wt.ppm	Al/wt.%	Ge/wt.%	伯刈利守禰左(. %)
	А	840	0	3.9	—	
	В	840	0.4	4.5	20.0	AI高濃度化で
	С	1022	3.7	3.8	14.3	相対利得偏差小
	D	958	6.5	4.1	12.8	

実験方法

○測定方法

EDF試料: 蛍光法、Er₂O₃, Er-metal: 透過法

○**測定場所**: BL16B2 (産業界専用BL、サンビーム) BL01B1

○入射X線条件

単色器: Si 111 2結晶分光器 Rhコートミラー使用

○X線測定条件

Pr

入射X線検出器: 17 cm イオンチャンバー、N₂フロー 透過X線検出器: 31 cm イオンチャンバー、N₂フロー 蛍光X線検出器:

7素子SDD検出器(BL16B2)

素子面積; 5 mm²×7;試料一検出器距離; < 10 mm 19素子SSD検出器(BL01B1)

高感度化検出器の利用

蛍光法測定時のレイアウト

結果:XANES領域

- **1. ホワイトピークの高さ** Er << EDF < Er₂O₃
- **2. ホワイトピークの位置** Er < EDF < Er₂O₃
- 3. 他のピーク •8.4 keV付近のピーク Er: なし EDF: Al濃度に応じて強度変化

結果:EXAFS振動

RC

- ≻EDFとEr203、Erには明らかな違い
- ≻試料AとB,C,Dの間に振動周期の違い
- ≻EDF試料間で₭=9近傍に違い

結果:動径分布関数

EDFの最近接原子のあたりは複雑な形状を示す。

Er-0結合距離: 試料Aが他のEDFより短距離

シミュレーションによる定量解析 (FEFF8)

結果:Er-0 結合距離の変化

RC

結果:Er-0 配位数の変化

EDFのEr-O配位数は、 Er₂O₃のEr-O 6配位に比べ小さな値

Al=0 wt.%はEr-O結合距離小
酸素以外との直接相互作用あり?

Er, Si, Al, Ge?

現時点では断言できない

ファイバ化による急冷の影響が 構造に現れている可能性がある どのような構造?

プリフォームとファイバの比較

口頭発表

第2回産業利用報告会,2005/9/5,SPring-8 OFC,2006/3/11,Anaheim,California,USA 電子情報通信学会,2006/3/25,国土館大 応用物理学会2006年春期講演大会,2006/3/25,武蔵工大 電子情報通信学会 光ファイバ研究会,2006/5/11,九州大

論文: T.Haruna et al, Optics Express, in press. 特許: 1件出願済み

謝辞

本研究を遂行するにあたり、多くの方の支援をいただきました。 JASRI 大渕様、本間様にこの場を借りて御礼申し上げます。

関連課題

- ・BL01B2(先端大型研究施設戦略活用プログラム:2005B0799)
- •BL16B2 (C03B16B2-4003-N、C04B16B2-4030-N、C05A16B2-4030-N)

共同研究者 住友電工 春名、斎藤、山口、大西、石川、宮武、長谷

