

研究の背景

Changes for the Better

X線を用いた非破壊・迅速な詳細解析手段を提供する

過去の研究例

Changes for the Better

CFxClyガスのCI-K吸収端スペクトル

Physical Review A 43, 3609 (1991)

2

MITSUBISHI 三菱電機

評価試料

Changes for the Better

	略称	化合物名称	化学式
1	DeBDE	デカブロモジフェニルエーテル	$\begin{array}{c c} Br & Br & Br & Br \\ Br & & & \\ Br & Br &$
2	DiBB	4,4'-ジブロモビフェニル	Br
3	DiBDE	4,4'-ジブロモビフェニルエーテル	Br O - Br
4	FG2000	テトラビスフェノールA	OH Br Br Br Br
5	FG3100	テトラビスフェノールA ー ビス[2,3-ジブロモプロピルエーテル]	BrH ₂ CBrHCH ₂ C
6	HBB-S	ヘキサブロモベンゼン	Br Br Br Br
7	EB400-S	ブロモビスフェノールS	OH Br Br Br Br Br Br

上記有機臭素化合物(試薬級粉末)をスコッチテープ上に均一分散させたものを使用

測定条件

XAFS測定: SPring-8 BL16B2(產業用専用BL) 利用

- 単色化 : Si(311) 2結晶分光器
- ・高次光除去
 : Rh コートミラー(入射角=2 mrad)
- ・測定
 : 透過法による測定
 - 入射光モニタ = 17cm 電離箱, N₂100%
 - 透過光モニタ = 31cm電離箱, Ar 100%

Normalized XANES

Photon Energy (keV)

・いずれの化合物も13.46~13.49keVに2つの吸収ピーク(A, B)を有する ・いずれの化合物もピークBの強度が最大であることから, ピークBの強度で規格化

Changes for the Better

Br-K吸収端XANES微 分スペクトル

ピークBの位置(微分スペクトルが2回目に0を横切るエネルギー)が試料 間で明らかに異なる

6

Changes for the Better

MITSUBISHI

三菱電機

Samala	Peak A		PeakB			
Sample	Position	Int.	Position	Int.		A/D
DeBDE	13474.1	0.923	13482.0	1	7.9	0.923
DiBB	13474.5	0.900	13480.0	1	5.5	0.900
DiBDE	13474.6	0.751	13480.2	1	5.6	0.751
FG2000	13474.4	0.919	13480.8	1	6.4	0.919
FG3100	13474.0	0.922	13480.5	1	6.5	0.922
HBB-S	13474.0	0.869	13481.8	1	7.8	0.869
EB400-S	13474.2	0.920	13481.2	1	7	0.920

△EとA/Bの双方が誤差の範囲内で一致するものなし → 両方の組み合わせで臭素化合物の同定が可能

考察

化学式	Br Br Br Br Br	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BrH2CBrHCH2C Br Br Br Br Br		
ΔE	7.8	7.9	6.5		
A/B	0.869	0.923	0.922		

△E: ベンゼン環へのBrの配位数が影響?
 (Br配位=1の試料では約5.5eV)
 A/B: 今回の試料の範囲内において傾向見出せず
 (光電子の散乱過程に関する理論計算が必要)

実用に向けて

Changes for the Better

XANES(X線吸収スペクトル):透過法以外でも測定可能 X線吸収に伴う蛍光X線の検出 → 蛍光法 (光)電子の検出 → 電子収量法

基板上のエッチング残渣
 半導体封止樹脂中の難燃剤
 などの評価も十分に可能

MITSUBISHI

= 菱雷機

蛍光X線スペクトル測定で, 臭素存在の確認 → エネルギー走査により化合物形態の確認

感度:数十~数百ppm(推定) 化合物形態の同定: データベース化が必須

結論

- 有機臭素化合物のBr-K吸収端XANESには、約300eVの範囲 内に2つの吸収ピークが現れる。
- 2. 規格化したスペクトルにおいて、2つのピークの「エネルギー 差と強度比」の組み合わせは、評価した7種類の試料において 全て異なった。
- 3.2の結果から、Br-K·XANESにより有機臭素化合物の結合状態を非破壊・高感度で迅速に評価できる可能性がある。