はじめに①

- ULSIに代表されるSi半導体デバイス
- 抵抗・信頼性の点でAI配線に代わるCu配線
- 課題
 - SM(Stress Migration)耐性に優れるとされるCu配線 だが、特定のビア(層間接続孔)においてSIV(Stressinduced voiding)による集中的な断線不良が生じる
 →配線信頼性における深刻な課題

はじめに2

- 原因とメカニズム
 - ULSIの微細配線には変形拘束による<u>残留応力</u>が存在する。
 - 応力により誘起される原子輸送現象が亀裂を成長させる。
 断線不良に至る。
- 対策
 - 微細配線に存在する残留応力を詳細に評価する。
 - 残留応力のメカニズムを明らかにし、適切な膜組成、成膜方法・条件を見出す。
 - まずベタ膜において、薄膜中残留応力の深さ方向分布を評価 する方法を検討する。

評価手法

- 非破壊での薄膜表面近傍の残留応力を測定→X線回折法
- 薄膜試料が対象→斜入射(低角入射)
 - - 全反射条件以上、基板到達深さ以下の侵入深さを測定する。

 - 下層からの回折ピークを深さの指標とする。
- 深さ方向分布→ ω - χ 法(入射角一定)
 - 通常の応力測定法(並傾法、側傾法)では、傾斜角ψ変化時に侵入深さが変化する。
 - 試料回転角 ω および χ を制御し、傾斜角 ψ 変化時も入射角 α を 一定に保持する条件で回折ピークを測定する。
- 平行ビーム、高感度、高精度測定→放射光利用

*ω-x*法の概念

試料面法線と回折面のなす角 ψ $\cos \psi = \cos \chi * \cos(\theta - \omega)$ 従って、 $\sin^2 \psi = 1 - \cos^2 \psi$ $= 1 - (\cos \chi * \cos(\theta - \omega))^2$

 $\cos \chi \sin \omega e$ ー定にする $\chi, \omega e$ 選べば $\sin \alpha = \cos \chi \sin \omega e$ 与えられ、 真の入射角 α 一定の応力測定が可能

測定方法

• 概略

- Cu薄膜中残留応力の深さ方向分布を評価
 - *ω*-*χ* 法を用いた斜入射X線回折法で測定する
- 成膜・アニール等処理条件や材質・組成が応力分布に与える影響を評価
 - 各種処理したCu薄膜、Cu合金薄膜を試料として用いる
- 測定試料
 - 2インチ径ウェハー(短冊状に切り出し)
 - Si基板/バリアメタル層(TaN、50nm)/配線膜層(Cu、200nm)
 - TaN成膜法 DCマグネトロンスパッタ
 - Cu成膜法 電解めっきorスパッタ
 - 熱処理条件
 - 熱処理なし(as depo)
 - 真空熱処理(600℃×15分)

実験配置(SPring-8 BL16XU)

写真1 BL16実験ホール(下流側から撮影)

写真2 BL16XU回折計(上流側から撮影)

写真3 測定時の様子(20アーム周辺)

実際の測定条件

測定ピーク

 Cu2本:111、220←異方性考慮
 TaN1本:111←深さ確認用

表1 測定条件の一例

α	sin2 ψ	ω	X	2 <i>θ</i> 始点	2θ終点	角度送り	積算時間	回折面	filename
0.1	8 0.00	0.18000	0.0000	12.50	15.00	0.0100	1.0	TaN(111)	M20001a018-0.dat
0.1	8 0.00	0.18000	0.0000	16.90	17.35	0.0025	2.0	Cu(111)	M20001a018-1.dat
0.1	8 0.00	0.18000	0.0000	27.95	28.30	0.0025	2.0	Cu(220)	M20001a018-2.dat
0.1	<mark>8</mark> 0.05	0.18271	9.8769	16.90	17.35	0.0025	2.0	Cu(111)	M20001a018-3.dat
0.1	8 0.05	0.18271	9.8769	27.95	28.30	0.0025	2.0	Cu(220)	M20001a018-4.dat
0.1	8 0.10	0.18771	16.4858	16.90	17.35	0.0025	2.0	Cu(111)	M20001a018-5.dat
0.1	8 0.10	0.18771	16.4858	27.95	28.30	0.0025	2.0	Cu(220)	M20001a018-6.dat
0.1	8 0.15	0.19316	21.2733	16.90	17.35	0.0025	2.0	Cu(111)	M20001a018-7.dat
0.1	8 0.15	0.19316	21.2733	27.95	28.30	0.0025	2.0	Cu(220)	M20001a018-8.dat
0.1	8 0.20	0.19911	25.3079	16.90	17.35	0.0025	2.0	Cu(111)	M20001a018-9.dat
0.1	8 0.20	0.19911	25.3079	27.95	28.30	0.0025	2.0	Cu(220)	M20001a018-10.dat
0.1	8 0.25	0.20564	28.9192	16.90	17.35	0.0025	2.0	Cu(111)	M20001a018-11.dat
0.1	8 0.25	0.20564	28.9192	27.95	28.30	0.0025	2.0	Cu(220)	M20001a018-12.dat
0.1	8 0.30	0.21287	32.2630	16.90	17.35	0.0025	2.0	Cu(111)	M20001a018-13.dat
0.1	8 0.30	0.21287	32.2630	27.95	28.30	0.0025	2.0	Cu(220)	M20001a018-14.dat
0.1	8 0.40	0.22993	38.4781	16.90	17.35	0.0025	2.0	Cu(111)	M20001a018-15.dat
0.1	8 0.40	0.22993	38.4781	27.95	28.30	0.0025	2.0	Cu(220)	M20001a018-16.dat
0.1	8 0.50	0.25189	44.3898	16.90	17.35	0.0025	2.0	Cu(111)	M20001a018-17.dat
0.1	8 0.50	0.25189	44.3898	27.95	28.30	0.0025	2.0	Cu(220)	M20001a018-18.dat
0.2	2								
0.2	6								
0.5	0								
1.0	0								
3.0	0								

- 角度設定
 - 入射角 α は任意の6点に設定
 - α =0.18, 0.22, 0.26, 0.50, 1.00, 3.00°
 - 傾斜角ψは任意の9点*1に設定
 - $sin^2 \psi = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50$
 - $\alpha \geq \psi$ の組み合わせに対して、条 件を満たす試料回転角 ω および χ を算出する。
 - *1 材料学会の残留応力測定標準(鉄鋼編)では、sin² ψ は0.0~0.6° の範囲で5点以上測定することが推奨されている。

図3.1 Cu薄膜試料(めっき、as depo)における ψ 変化による 図3.2 Cu薄膜試料(めっき、真空熱処理)における ψ 変化による Cu(111)回折ピークのシフト(入射角 α =0.22° 一定) Cu(111)回折ピークのシフト(入射角 α =0.22° 一定)

 $sin^2 \psi$ 変化に伴う低角(面間隔拡大)方向へのピークシフトが確認された →引張応力の存在

図4.1 Cu薄膜試料(めっき、as depo)における 入射角αに対するTaN(111)回折ピークの変化

図4.2 Cu薄膜試料(めっき、真空熱処理)における 入射角αに対するTaN(111)回折ピークの変化

深さ情報を追跡できている 熱処理によるTaN変質が確認された

処理データ(2θ -sin² ψ 線図)

残留応力値と深さの算出

- 残留応力値σの計算
 - 線図の傾き M
 - ピークフィッティングを行い回折
 ピークの位置決めを行う。
 - 2 θ -sin² ψ 線図を作成し、直線近 似で傾きを求める。
 - 定数項
 - ヤング率 * E = 129800MPa
 - ポアソン比* v=0.343
 - 無歪回折角** 2*θ*₀=17.371deg.

$$\sigma = \frac{-E}{2(1+\nu)} \cot \frac{2\theta_0}{2} \frac{\pi}{180} M$$

深さの算出

- TaNピークが出現した時点で侵入深さがCu膜厚と同等になったものと定義する。
- - 侵入深さの計算式よりK_x/µを算 出する。
- 求められたK_x/µを用いて、他の 測定条件における侵入深さを算 出する。

$$Z = \frac{\cos \chi \sin \omega}{\mu} \frac{\sin(2\theta - \omega)}{\sin \omega + \sin(2\theta - \omega)}$$

残留応力の深さ方向分布

成膜方法により膜中応力分布が異なる 真空熱処理により膜中応力値が変化する

まとめ

薄膜中残留応力の深さ方向分布を測定できた 成膜方法・処理により分布が異なることが確認できた ↓ 合金薄膜や処理条件の影響評価が可能

- 課題、問題点
 - 応力値の精度検証・向上
 - 測定誤差の検証
 - 幾何学的な補正計算
 - 定数項の検討
 - 面方位の検討
 - 実験室型装置データとの関連 付け

今後の予定

- 膜組成が応力に与える影響評価
 - 薄膜の組成を変えた試料の測定 (CuN薄膜等)
- 処理条件が応力に与える影響評価
 - 処理条件を変えた試料の測定(真 空熱処理と高圧アニールの差異評 価)