Ni 薄膜のマイクロ蛍光 XAFS 分析

松下電器 尾崎伸司

ozaki.s@jp.panasonic.com

LSI は急速なスケールダウンが進み、2005 年ロードマップでは、2010 年、40 nmが目標である。要求される分析領域の大きさ、 並びに検出下限は年々厳しさを増している。例えば、各種の機能性薄膜ではµm オーダーのサイズでなければ、その機能 を発現しないような薄膜が存在する。また、同様なプロセス条件で処理しても、通常のヘ'タ膜と実パターンでは特性が異なる ような機能性薄膜が存在する。我々は、昨年度の産業利用報告会で、BL16B2 で、7 素子 SDD を用いれば、

10¹²atoms/cm² オーダーの Si 基板上の Ni の EXAFS 分析が可能なことを報告した。

今回、結合状態の識別が可能な、分析領域の大きさ、絶対量が どの程度であるかを検討するため、Si 基板上の Ni 薄膜につき、 マイクロ蛍光 XAFS 法で検討した結果を報告する。測定は、BL16XU の単素子 SDD を利用したマイクロビーム形成装置で行った。図1に NI 薄膜につき 2 μ m×2 μ mのビーム径で測定した Ni-K XAFS スペク トルおよび BL16B2 で 7 素子 SDD を用い測定した XAFS スペクトル 示した。2 μ m×2 μ mのスペクトルは、通常のスペクトルに比較し、若 干ノイジーであるが、十分に Ni 金属として識別可能なスペクトルが得ら れている。

以上より、BL16XU で、KB ミラーによるマイクロビーム形成装置を用い れば、ビーム径数µm、Ni 絶対量 1pg 以下で、Ni 結合状態識別が 可能なことを確認した。

Figure 1 Ni-K XAFS spectra obtained from Ni films of $2 \mu m \times 2 \mu m$ at BL16XU and 2mm \times 9mm at BL16B2.

New metallic elements relevant to the semiconductor devices

Device	Elements
DRAM	Sr, Zr, Ru, Ba, Ce, Hf, Ta
Logic	Co, Ni, Ge, In, Sb, Ta, W
FeRAM	Sr, Zr, Ru, Ta, Ir, Pt, Pb, Bi

 Hfシリケート、HfO2、ZrO2等の次世代ゲート材料、PZT、SBT等を 用いるFeRAM、その他、新規元素を含む電子材料の半導体 プロセスへの導入が始まっている。これら元素は、新規プロセス導 入を中心に、半導体プロセスにおける挙動解析のため、超微 量分析と局所分析が必要になると予想される。

Panasonic ideas for life

Panasonic ideas for life

^{実験 室 系 は A 験 強 度 小 定 く、 Niのピークを検出出来ない。 放射光でもmmオーダー弱の 測定領域が限度(Ni薄膜は 膜厚~10nm)}

 $\cdot \mathsf{TEM}$

同定可能だが、試料間の差 異の確認が難しい。

μmオ-ターのサイズでなければ、その機能を発現しない機能性薄膜が存在する。同様なプロセス条件で処理しても、ヘタ膜と実パターンでは特性が異なる機能性薄膜が存在する。状態の識別が可能な、分析領域の大きさ、絶対量がどの程度かを検討するため、Si基板上の Ni薄膜につき、マイクロ蛍光XAFS法で検討した結果を報告する。

図 C-MOS DRAMのパターン

200 **u** m

Panasonic ideas for life

