X線反射率測定によるラジカル酸化 SiO₂膜の密度評価

三菱電機株) 先端総研 河瀬 和雅

Kawase.Kazumasa@ak.MitsubishiElectric.co.jp

半導体デバイスのゲート絶縁膜には、主にシリコン酸化膜が用い られており、特に熱酸化膜は絶縁特性に優れるため、超LSIなどに 多用されている。しかし、熱酸化は約700°C以上の高温で処理され るため、ドーパントの熱拡散などの問題や、ガラス基板やフィルム 基板を用いたデバイスに適用できないなどの問題があり、酸化膜 形成温度の低温化が望まれている。このため、低温でも高い酸化レ ートが得られる、高密度低電子温度プラズマを用いたラジカル酸化 が近年注目されている。ラジカル酸化条件を最適化するためには、 反応メカニズムを明らかにしなければならないが、ここではX線反 射率測定により、SiO2腹の密度を評価し、熱酸化と比較した。

図1に、約6 nm の(a)熱酸化膜、及び(b)Ar/O₂プラズマ中で生成し た酸素ラジカルにより、Si 基板を酸化(400°C)して形成したラジカル 酸化膜の X 線反射率スペクトルを示す。熱酸化膜よりもラジカル酸 化膜のスペクトルは振幅が大きく、SiO₂膜と Si 基板の密度差が大き いことを示している。ラジカル酸化は、低温でOラジカルをSi基板中 に導入するため、ネットワーク構造の熱的緩和が小さく、高密度な 膜が形成されたと考えられる。

1. はじめに		
ULSIの高集積化 → ゲート絶縁膜極薄化(~1 nm) → 絶縁特性向上への要求		
従来の熱酸化膜に代わる新しい酸化方法の開発が必須		
ラジカル酸化のメリット		
酸素ニジカルの登い酸化力		小门口
酸素フンガルの強い酸化力	\rightarrow	・低温処理
酸化レートの結晶方位依存性無	L→	·SiO ₂ /Si界面平坦
		•poly-Si上酸化膜厚均一
マイクロ波励起プラズマラジカル酸化		
	\rightarrow	• 三酸化レート
【 低電子温度フラスマ(~1 eV)	\rightarrow	・低フラスマタメージ
	Ar	+ 宇宙線 → Ar ⁺ + e ⁻ (低速)
	e-(低速)	+ //波 → e ⁻ (高速)
	Ar	+ e^{-} (高速) → $Ar^{+} + e^{-}$ (低速)
	Δr	$+ e^{-}$ (萬速) $\rightarrow \Delta r^* + e^{-}$ (低速)
	Λr*	
	Ai	$+ 0_2 \rightarrow AI + 20$

