サンビーム設備更新報告2

the second se	the second se
(株)東芝 竹村モモ子	、山崎 英之
(財)電力中央研究所	
(株)富士通研究所 パナソニック(株)	山中 記 淡路 直樹 尾崎 伸司
三菱電機(株) 住友電気工業(株)	上原 康飯原 順次
(株)豊田中央研究所 スプリングエイトサービ	堂前 和彦 ス(株)
理学電機工業(株)	梅本 慎太郎 庄司 孝

蛍光X線装置改造

サンビームID(BL16XU)の蛍光X線装置は;

波長分散型(WDX)検出システムを装備したユニークな装置である。半導体基板シリコン ウェハの表面極微量汚染分析を主目的として1999年に設置され、2000年にはBL4OXU の準単色光超高輝度光を活用して世界最高感度を達成した。その後アンジュレータビー ムラインXAFS測定制御が可能になったことにより、高分解能XAFS測定ツールとしても 活用されている。

今回の設備更新で;

従来の機能を維持しつつ、微小部分析機能を改良した。試料駆動機構を改良するととも に、高性能半導体検出器(SDD)と長焦点顕微鏡(カメラ)を追加し二次元マップ測定機能 を付加することにより、元素・結合状態の微小部分析装置として稼動を開始した。また従 来のエネルギー高分解能という特長を維持しつつ、上流単色器の改良(液体窒素冷却)に よるビーム中心強度の向上と試料~検出器配置の変更により、高感度化も実現した。

